MTMORATDIM MO. 1

To: Members of seminar on Statistical Methodology
From: Howard Railla
Subject: An experiment involving objective and subjective uncertainties.
2. Do not discuss this memorandum with your colleagues before answering.
2. You are given two mas each containing just red and black balls. Urn Mo. 1 contains 50 red and 50 black belle. Urn [io. 2 contains an unknown number of reds and an unknown number of blacks.
3. Suppose you are, given two options:

Option NO. 1: Select ε color (R or B), announce it, and then take a single random drawing from urn No. 1.
the same color
Option NO. 2: Select a color (R -orB), announce it, and then take a single random drawing from urn No. 2.

1 Suppose, further, that no matter what option you choose the payoffs are as follows:
a) II your selection differs from your drawing you get nothing.
b) If your selection agrees with your drawing you gain $\$ 100$.

Answer the following questions, keeping in mind your financial position as of today. Answers will be collected and kept anonymous.

Question 2: If you must choose either option so. 1 or option Bo. 2 which would you choose?

Question 2: If you were given the choice between taking no option or option No. 1 at a price, up to how much would you be willing to pay for option No. 1?

Question 3: If you were given the choice between talking no option or option No. 2 at a price, up to how much would you be willing to pay for option No. 2?

To: Members of seminar on Ststistical Methodology
From: Howard Railfa
Subject: An experiment involving attitudes toward money and gambling.

Prepare a set of complete and unambiguous instructions for your agent who will act in your behall. Your agent will be given just one option which he can either accept or reject. However, you do not know the specific form of the option your agent will receive except that it will be of the following general form: It will involve a price p for the privilege of participating in a gamblewith a 50-50 chance of recaiving nothing or a rewbrd of R dollars. Such an option will be denoted by (p, R). For example, if your agent is presented with option (27, 86) and your instructions tell him to accept, then: he pays ie7; a fair coin is tossed; heads he gets $\$ 86$ and tails he get nothing. You are further told R will not exceed \$1,000.

Keoping your financial position, as of today, in mind, partition the (p, R) points into your own acceptance and rejection sets. For example, one possible partition might be of the form:

To: Members of Serins on Statistical Methodology
From: Howard Raffia
Subject: A continuation of memorandum No. 1.

We start out with the identical setup of memorandum No. 1. The new exmmicls goes as follows:

Instead of a single trial there now will be a succession of ten trials. Each trial consists of the following four steps:

Step 1: Select a color (R or B) and announce it.
Step 2: Select ian urn (no. 1 or 2) and draw a single random ball from the um selected.

Step 3: You receive nothing if your announced color and the color of the uitharewn bald disagree; you receive $\$ 100$ if they do agree.

Step 1: Return the withdrawn bail to its urn.
Formulate your strategy (in writing!) for the play of this tenatrial "game". Your set of instructions constitutes a bona side strategy if and only if it satisfies this simple test: An agent acting in your behalf and using only your instructions must know exactly what to do at a given trial conditional upon his information about past trials. He should never have to return to you for further clarification of a situation not adequately dealt with in your instructions.

In this memo you're being asked what you would do if you had to play. In a later memo you will be asked: "Up to what amount would you be willing to pay for the privilege of playing this game?"

$$
\begin{aligned}
& \text { Ex: Sapour thy hame to let an the som color for } 10 \text { thous; and that } \\
& \text { On II contaris } 100 \text { balls of same color. } \\
& \text { EX: Jo um II containing } 50 R \text {, add un n II contonncy } 50 \text { as } B \text { ball. } \\
& \text { G: Una I has } 49 R, 51 B \text {; add } 50 \text { R an B ball. }
\end{aligned}
$$

$$
\text { Ex: } \begin{array}{r}
2 \alpha b \text { i } 2 \beta b \\
2 \alpha \underline{?} \cdot \beta \beta c
\end{array}
$$

$$
\text { Ex: } \begin{aligned}
& P \\
& B \\
& 3
\end{aligned} \underbrace{P} \text { How monet anil yon pay for } Y \text { ? for } B \text { ? for } Y \cup B \text { ? }
$$

To: Members of Seminar on Statistical Methodology
Fron: Howard Raiffa
Subject: A Group Variation of Memorandum 2.

You are the consuitant to a tean of four individuals. The team bas been given the task of giving a complete set of instructions to an agent, acting in the team's behelf, telling him what (p, R) options to accept and what to reject. Besides their external problem of joint acceptance or joint rejection they have an internal problem: How should they share the risks and. profits accruing from on option that is jointly accepted? The internal and external problems are intrinsically intertwined and they wigh you to drav up a reasonable contract for the internal behavior of the group and a set of joint instructions for their external behavior.

The individual' ${ }^{\text {a }}$ acceptoreject etrategies are given below:

The problem is a dipescult one and these is no unique "answer". But nevertheless be prepared to discuss some of the guiding principles that you think might be reasomable.

To: Members of the Seminar on Statistical Methodology From: Howerd Raiffa

Subject: Are your subjective probabilities good enough?

Consider the following two options:

Option 1: Twentyofive students of this class will be picked at random. If any two sturents have the same birthdate you will receive $\$ 100$; otherwise you get nothing.

Option 2: An urn contains 1000 balls, x of them red and 1000% block. A bail is drawn at random. If it is red you get $\$ 100$; bleck you get nothing.
Quastion a): If you had to make an independent decision in the next few minuter, for what value of x vould you be indifferent between the two options?
b): What could you do to kelp yourself give a more thoughtivl answer?

MGEORARDEO KO. 6

To: Members of the Seminar on Statistical Methodology
From: Eowerd Raifia
Subject: The "Law of Averages"

1. A coin has been tossed g83 times resulting ia 451 tails and 432 heads. However, trials 78 to p 83 gave all tails. Is you decidad to bet on the next toss, how would you call? Why?
2. The following experiment has been conducted with a subject who clains to have extraosensory percoption. In a gambliag experiment the subject wes given 100 pennies. At each trial the subject wagered one penay against the experimenter that he could gress the outcome of a tose of a "reportediy ${ }^{\text {mi }}$ true coin. At the and of 10,000 trials the subject had a curalatod total of 273 penuies and was ahead (1.c. hack more than 100 pennies) for 9,573 trials: The experinenter vas at first shattered by these results since he does not believe in extremsensory perception. Eut later he realized that perhaps the coin is not really "true since In the 10,000 trials only $s, 875$ heads appeared and perhaps this bias could have accounted for the astounding 9,573 iigure. Comment.
3. Wast do you think of the following gambling systom for betting against the bouse? Our chances of winning an even noney wager at any twial is - 45 (a inttie less than the "fair" .50). The house 2smit on a single wager is $\$ 2000$; our initisil capital is $\$ 5000$. Our procedure is the fallowing: We start a "round" of trials by writing down the three numbers

$$
123 .
$$

In a given round we will edd certain numbers to this liat and delete othar numbers in a maner to be preseribed below. At any trial we bet the suan of the first and last numbers on our 11st. For exangie at stage one we bet $1+3=4$ 。 If we lose we ada 4 to the $11 s t$ giving

$$
223 \text { 4. }
$$

Hext we would bet $2 \% 4=5$. IS we lose we add 5 to the listg giving
$123 \& 5$.

Mext, we woula bet $2+5=6$. Suppose now we win. Then we eelete the first and last numbers on the list, giving

23 今。

We next bet $2+4=6$. If we lose we add 6 ; if we win ve delete 2 and 4. Fach time ve lose we acd a single number to the 2ist. Each time we win we delete two numbers from the list (excopt when there is only one number lefit). It canbbe shown that when all the numbers are deleted (i.e. a round is through) we have won $2+2+3=6$ doljars. Sooner or later all the numbers will be deleted since we take two away. 45 of the time in the long run and add only one .55 of the time in the loing zun.
\qquad

$$
\begin{aligned}
p \cdot u(0)+(1-p) \cdot(10) & =u(6) \quad p=\frac{u(6)-u(10)}{u(0)-u(10)} \\
p \cdot u(0)-p u(10)+u(10)=u(6) &
\end{aligned}
$$

To: Members of the Seminar on Statistical Hetrodology
Fram: Koward Railis
Subject: What is "equally likaly"?

The getting of this littie parody is in a penitentiary. Thare prisoners Able, Baker and Charlite and a Warden comprise our cast of characters. The parola boand met yesterday in a secret meeting and decided to grant a parale to two inmates to be effective a weels hence. It is common knowledge that only Able, Baker and Charlie were eligible for parole and $1 t$ bas leaked out that the parole board selected two prisoners by a random device giving each of the three jrisoners an equal chance. As yot the boand bas not announced the Iucley pair.

Able, ous lead man, has been thinking hard about his cbances and be ${ }^{\circ}$ s sun smack into a philosopinical paradox. Able originally figured out that the probability of 11.8 being paraled is $2 / 3$. In particular, this Collowed since be considered the threse events $(A, B),(A, C),(B, C)=$ [where (A, B) is alliptis for the eveat "Able and Baker are to be paroled. with a Bimilar interpretation for (A, C) and $(B, C)]$ oo to be equally likely and tbat 2 of theoe 3 mutunily exclusive, mutualiy exhaustive and equaily ifkely events would be favorable to him. fine, so far, but now let us fallow Able ${ }^{8}$ s present train of thought.
 me. But since we are such good iriends I'm oure be will tell me in btrict confidance the name of one of the paraler ${ }^{3}$ otber than mysels. Pexhaps with this infortastion I car gain better laalegt into my chances. Suppose the rarden says "aaker is to beleased" what thea? Well then $1 t^{\circ}$ s between charlis and nyself and II can'to see why either of us has a better chance to be inciuded. Thus conditional on the warden saying 'Baker', "Able' and 'Charlie", iare ocualiy ilitely. Similayly, conditional on the warden saying "Charlie",
 warden says my chances have sllpped from $2 / 3$ to $1 / 2$. Well, I won ${ }^{\circ}$ t ask him ${ }^{m}$

Questions Does it seem to you the very fact that Able has even thought about igking the varden his question has caused his chances to go from $2 / 3$ to $1 / 29$

Pat Congzi

$$
1 v-4-8331
$$

$$
\begin{array}{rll}
& H N V+I \\
\Rightarrow & -2 & -2 \\
-b & -b \\
-b & -8 & -8
\end{array}
$$

